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Abstract In some population the AIDS/HIV incidence rate 8 ¢ (0, =) is altered in the middle of a data collection
period due to preventive treatments imposed by the health service agencies. Shanmugam [1985] introduced the
intervened Poisson [IP] model which is appropriate to analyze data of this type. However, the classical approach
leading to the maximum likelihood [ML], moment [M] or minimum variance unbiased [MVYU] estimator of 8is

mathematically formidable and practically inconvenient as far as sequentially updating the estimate when new data

P

arrive. Hence, there is 2 need to devise a Bayesian technique to estimate 8, and i is done in this article. The results
are illustrated using & data on AIDS/HIV incidence in the state of Alabama. Advantages in the Bayesian approach

are cited.
1.1 BACKGROUND AND MOTIVATION:

Consider a random sample X, = (%, X;,....X,) on the
number of AIDS/HIV cases that have occurred in nz
1 houses. An underlying model for X, is to be
chosen depending on how the daia coliection
apparaus is set up. Had a random sample of n
houses been chosen a priori, then the model for X,
is Poisson (P):

pix 6Py =Pr(x=xl6,P)=e®®Yxl x=0,1,2... ;850
H

If the data are collected from a list of houses which

are reported {0 have at least one case of AIDS/HIY

incidence, then the model for X,,, is positive Poisson

(PP):

p(x|8,PP) = Pr(X = x| 8, PP) = (¢° - 1)'&"/x!,
x=12..; 8>0. 2)

because a zera event is unlikely.

In addition to the reality that X = 0 is not observable,
suppose a medical intervention of some sort takes
place. That is, due to the seriousness of the epidemic,
the health officials may impose various preventive
treatments such as educating the public about the
ways of avoiding AIDS/HIV or enacting quarantine
on the inflicted persons even in the middle of a data
collection period, and these actions cause the
incidence rate to be different from the time of such
medical intsrveniion. To study a health chance
mechanism of this type, Shanmugam [1985]
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introduced a model, and named it intervened Poisson
(1P} model. That is

p(x{8IP) = P[X = x|6,IP] = [e"'®(1 - e®)]'[(1 + p)’
- pXee/x! 3)

where x = 1,2, 8> 0, 0 £ o < « is called the
intervention parameter.

The PP model stated in (2) is obtained as a special
case of (3) by substituting p= 0. What does this
special case imply? A zero value for p is indicative
of completely successful preventive treatments (see
Shanmugam [1985] for details), whereas p= 1 is to
be interpreted as a status quo in the incidence rate
even after the preventive treatments are applied.
Streit [1987] proposed a locally most powerful
statistic to test a hypothesis Hy: p= L versus H, : p
<1. Recently, Shanmugam [1992] derived a c{«) test
statistic as an alternate o Streit's statistic.

The discussions in this article pertain to estimating
the incidence rate, § as this estimate is a basis for
health officials in making future decisions on
whether to further lmpose a stronger preventive
action.

Unfortunately, the estimation (see Shanmugam
[1985] for details) of 6 is a formidable task, as It
involves solving a nonlinear estimating function
B lpels(e® 1D -% whether the ML or M
method is applied, where ¥ - Txi/n denotes the
sample average.



On the contrary, the MVU method yields a simple.
expression: € = n S(n-1,n,-np)/S{n,n,-np) for
estimating 8, but its difficulty lies in computing the
generalized Stirling number S(), as the number is
known to be extremely large even for moderate
values of its arguments (see Shanmugum [1984] for
details on the generalized Stirling numbers).

Furthermore, in the discussions leading to 9or 8 the
incidence rate is assumed to be stable and fixed
although unknown. In an environment of AIDS/HIY
epidemic, this assumption is trivially unreal. Rather,
the incidence rate & should be treated as a random
variable, although it is still fixed over the design
period. This notion is Bayesian, See Zellner [1988]
for the importance of Bayes concepts in many
aspects of life.

The aim of this article is to chart out a Bayesian
technique to estimate 9. Advantages of the Bayesian
approach in estimating @ are pointed out. Using the
data on AIDS/HIV incidence in the state of Alabama,
the results are illustrated.

2. Prior and Posterior Knowledge of 8.

It is needless to state that in a Bayesian framework
the prior distribution which quantifies the knowledge
gained thus far about the parameter plays a crucial
role. Different ideas have been tossed around by
statisticians to reach a consensus in making up a prior
distribution (see Zellner [1971] for details). Among
others, the three major guiding criteria in making up
the prior have been Data Dominance (DD),
Invariance {I] and Conjugacy [C].

Under DD criterion, the data likelihood I(x,| 6)
ought to be dominant over the prior knowledge, and
it is captured by the Jeffreys' [19611 non
informational [vague] prior density:

JO)=F [ g In1(x (,, )| &]"" @)

where n, E, & andl(x,/0) denote respectively
the pricr sample size, the conditional expectation for
a fixed 8, the second order derivative with respect 8,
and the conditional likelthood function (for a fixed
8). For the IP model stated in (3), note that

1%, )18, B)-[e P12 T (1 p Y-8 ¥/ (x 1)
0 1

5

Using (5) in (4) we obtain, after simplifications, the
Jeffrey’s non informational prior density,
i

J(B)-[0/n 3,11 (6)

where n = 0[p + 1 + (e - 1)'] denotes the population
mearn.

Under the conjugate criterion, both the prior and the
conditional data likelihood Ix,,t8) are to be
"compatible” with each other. By compatible, we
mean that under such a prior, the posterior will also
be a member of the same distribution family. Such
aprior is conjugate, and it is also versatile. In other
words, a conjugate prior is a convenient building
block in the Bayesian analysis. The natural choice

for the conjugate prior of 8 in(3) is
C(B)ne (1 8)™ T(n .z, N

where the hyper parameters n, and ;?0 denote
respectively the prior sampie size and mean. The
conjugate prior in (7} is versatile enough to
accommodate both the exponential (with ngx, = 1)
and other skewed patterns of prior knowledge of the
incidence rate 8. Unlike in the cases of vague priors,
the conjugate prior contains the prior sample mean,

The posterior distribution #(Bix,,) of the incidence
rate depends on which prior is employed. If n(8)
indicates the chosen prior then =(8ix,,) = n (8) I (x,,
| (8) / M [x,,/] where the normalizer

Mz, I- f (O, |0)d0
denotes the marginal distribution of the data Xy

With the non informative prior in (4), the exact
expression for the posterior density J (8lx,,) is too
cumbersome to be of much use. Hence, we proceed
to find a stimpler but useful approximate posterior
distribution as follows. Since (1 - €% ~ 1 for large
#, and the variance

Oepe (Y

e’-1

of the IP model is approximately equal to (p + 1) 8,
we approximate the posterior density as

T8z, )= [r(p+1)™"e "= (rrc. 1), (8)
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If we did as in the case of non informational prior
using (i - €% “=1 for large n, the approximate
version of the posterior distribution becomes

H(Ox,, )~ [ 1)]™ 70 Vle P 009" D(piz [ -1]),
(%)

When the prior sample size n=0, the posterior
distribution in (9) coincides with the posterior
distribution in (8}, and hence we will not pursue (9)
for further discussion as an individual item since it is
a special case. With the conjugate prior density ¢(8)
in (7), the exact expression for the postericr
distribution is easily obtained, and it is

c(eixm zg[n{P’l}]"‘ola(l_ameﬁ-ﬂqﬁ*}/ﬁfc(p!ng,noa’
(10)

where the normalizing constant is Nc(p,nj,no,;o).

By considering the posterior density of the form:
T8, P)-[n(p+ Ve <PV G T B)
(11}

with some &=0 and $20 in a general set-up, we will
be able to address both the posterior conjugate

distributions in (10) with (& = n,, B =1y %) and in
(12) with (¢ =0, p = n,- 1) as a special cases of non
informative prior.

if the underlying model were to be Poisson in (1),
then the posterior distribution of the incidence rate ®
would have been also a gamma type:

(B, P)-(m oy P G=P T ) (12)

with some suitable values for the hyper parameters
e=0and 0.

3 Shift of [nformation About 8,

The literature contzins different methods of
measuring the information in a given data about the
parameter. Some measures are parametric while
others are nonparametric. See a recent book by
Sengupta [1993] for a complete bibliography on this
subject. Among non parametric types, Shannon’s
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information measure is popular, and it is defined by

S(8)--E[inm (@)} [ " n(8)inm(8)d0 {13)

in which =(8) portrays a probability density of the
parameter 8. By substituting n = 0 in (11) and (12),
we obtain the same prior density.

n{8)-uPe* 8" /T(B) (14)

for the incidence rate § whether the model for the
data yet to be coliected is Poisson or intervened
Poisson type, and this makes sense as it pertains to
the period before the data collection. Using (13) in
(i4), we notice that the prior information about the
incidence rate B is

S(8)-In[T(B)/ w]+(1-B)3,I'(B)- B, (15)

before the data collection apparatus is set up.

With the data collection apparatus is as described for
the IP model in (3), the Shannon's information for 8
changes to
S(8lx,,,, IP)-In(Tx B) [ p+1)-a])

(-0 BRTGB)05B)  (16)

in the aftermath of data collection. The gain in
information for @ due to the IP data is then

S(B [x("), IPy-8(6)-
EH[F(HQB)]AHU rlp-1] |
_ I‘;(;i) nlp+1]-2
[1-(r+ )13, T B)-[1-P1E,T(BYerx (17)

which due to approximations,

1AF(z)= Enﬁ%’c)-m(z-%)lnz (18)
and
-nfl-2)ez for |zl<1, {19
simplifies to

5@, 1P)-S(0)= L2 O 1) o)

e nlp-Lre
It is easy to see that with the data collection as
described for the Poisson model in (1), the gain in
Shannon's information after the data collection would
have been
S(6Ble yp P)-S(B) 21y

nx.,.ﬁ iy A




Hence, we obtain the shift A (1, &, p) in Shannon's
information for 8 due to the intervention, and it is

A(,0)-S(00, P)-S(Bl,  P)( PR

(22}

This amount is a value in the scale: [0. 1]. Notice
that the shift is a function of the current sample size
n, the hyper parameters « and the imtervention
parameter p. Because 0 ¢p< =, we note that

(23)

Furthermore, the shift is monoticaﬂy increasing to its
upper bound as the intervention level, p is
decreasing, Recall that p is smaller when the
intervention efforts were more effective (Shanmugan
[1985}). However, the shift in the Shannon's
information between Poisson and intervened Poisson
becomes insignificant for an extremely large sample
size n.

4 Bayes Estimation of §

In Bayesian analysis, the parameter is estimated such
that it provides a minimum risk (which is an expected
loss) with respect to the posterior distribution, Of
course, there is not a consensus opinion on defining
the loss, although the quadratic loss is popularly
used.

While it is difficult to select a loss function, the mode
of the posterior distribution could be chosen as an
estimate of 8. Using the posterior distribution in
(13}, we obtain the modal estimate:

8_(IP)- (e B-1)/[n(p-1)-ex] (24)

with an intervened Poisson data. The modal estimate
of the incidence rate with a usual Poisson data is
g (P)= {1+ P ]@(IP) using the posterior

distribution in (14). Notice that
8 (P=60P), (25)

implying the incidence rate is over estimated when
the regular Poisson data are used.

It is well known (see Zellner [1971] that the Bayes
estimate, 8 is the posterior mean, B{6px ] under a
squared error loss: £, =(6- BQ) and the posterior

L.

variance E{{(8- BQ)ZLx ], is its Bayes risk, R(Q).
With an intervened Possson data, and posterior
distribution in {11), we note that the estimate with
respect to a squared error loss is

ﬂm] (26)

8,(P) - E[B]x,,] - T

with the Bayes risk

R(QIP) = 6,(iP) / [n(p-1)+a].
Poisson sample, the Bayes estimate with respect to a
squared error loss is:

Using a

& (1P - [1 R ]e (IP) (27
a n+aj
with a Bayes risk
" 2
R(O,P) - P R(0.1P) (28)
14

Notice that the Bayes risk in estimating the incidence
rate using Poisson data is much more than the Bayes
risk  in  estimating it using IP data.
Also, B {P) > 8 {IP), implying that the incidence
rate 15 overestlmated using Poisson data in
comparison to such estimate, using intervened
Poisson data.

5 Mustration

in this section, the results are illustrated using data on
quarterly incidence of AIDS/HIV in the state of
Alabama which were supplied by the AIDS/HIV
surveillance office of the Alabama Department of
Public Health. Our sample consists of intravenous
drug users. Our data are assumed to follow a Poisson
model with parameter 8 portraying the incidence rate
of AIDS/HIV in the state. Our data yields x =
10689 with a sample size n = 29.

The hyper parameters are estimated using the gamma
[conjugate] prior distribution of 8 and the posterior
distribution in (12) is estimated. In Table 1, we
assumed ¢ = 0 for the non informative prior and g =
I for the simple exponential. Although chosen for
illustration purposes here, the hyperparameters can
also be chosen by the methed of Birch and Bartolucei
{1983). Values of p varied from 0.0 for completely
successful preventive treatments to p = 1 for the
status guo in the incidence rate. The values of g
maximizing the expected likelihood function of 8
weighted by the prior density of & varied from 1.53
to 1.58 for respective values of « and p.
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In Table 2, the shift in Shannon’s information is seen
to monotonically increasing to it’s upper bound of
0.03222. For a = 0, according to (22) the shift is
naturally zero. In Table 3, we have the results for
the estimation of 8 for the intervened Poisson data
versus estimation using the usual Poisson data. The
Bayes risk estimates are listed in Table 4. Clearly, for
p = 1 and prior value of =, we see that the incidence
rate i1s not over estimated using the intervened
Poisson data. Again for p = 0, the results of the
intervened and usual Poisson are equivalent. For the
status quo or p = 1, the risk is reduced considerably
for the intervened Poisson model. The Bayes
application with the Poisson model clearly reinforces
the previous work done with this data. However, in
all cases the intervened Poisson model prevent an
over inflated estimate of the incidence rate and
allows for the reduced risk.

References

Birch, R., Bartolucci, A.A. Determination of the
hyperparameters of a prior probability
model in survival analysis. Computer
Programs in Biomedicine. 17. 8% - 94
1983.

Jeffrevs, H. The Theory of Probability, London:
Oxford University Press. 1961,

Sengupta, J. K. Economics of Information and
Efficiency, New York: Kluwer Academic
Press. 1993,

Shanmugan, R. On central versus factorial
momements, South Africian Stat. J., 18,
97 - 110, 1584,

Shanmugan, R. An intervened Poisson
distribution and its medical applications,
Biometrics, 48 559 - 365,

Shanmugan, R. An inferential procedure for the
Poisson intervention parameter,
Biometrics, 48, 559 - 565. 1992

Zellner, A. An Introduction to the Bayesian
Inference and Decisions, Wiley Press,
New York. 1971,

10355

Zeliner, A. Bayesian estimation and prediction
usig asymmetric loss functions, J
Amer. Stat. Assoc., 81, 446 -451.  1986.

Zellner, A, (1988) A Bayesian Era, in Bayesian
Statistics, edited by J M. Benardo et. al.,
Vol. 3, 509 - 516. 1988,



p p [
0.0 1.57 0.0

p | v | RIQIP) | RIQP)
0| 0| 00375 | 0.0375

0.5 1.58 0.0

0 1 0.0350 | 0.0350
1.0 1.57 1.0

1] 0 1 000% § 00375
0.0 1.53 1.0

1 1 6.0091 0.0350

0.3 1.54 1.0

Table 4: Estimates of the Bayes

Table 1; Estimation of the Risk for the Intervenad
Hyperparameters and Poisson Data
a=1
P An,a,p
0.0 0.0322
0.5 0.0217
1.0 0.0164

Table 2: Shift in Shannon’s
information

pix o(IP) a(®)

010 1.0885 | 1.0885

G 1 1.0513 | 1.0513

I 0 | 05443 | 1.0886

I 1 0.0534 | 1.0516

Table 3: Estimates of 8 for the
intervened Poisson
data versus the usual
Poisson data
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